

#### **5TH SBSE INTERNATIONAL MEETING**



23 & 24 SEPTEMBRE 2019 - NOVOTEL PARIS-SUD

# ICE Concentration Linked with Extractive Stirrer (ICECLES)

SBSE "on the rocks" - David Benanou

Brian A. Logue

South Dakota State University







- Freeze concentration has been used for centuries, mainly in the food industry.
  - Frozen concentrate orange juice
  - Ice beer
  - Ice wine
- Sparingly evaluated for sample preparation.





# How does FC work?

### SOUTH DAKOTA STATE UNIVERSITY

- Freeze concentration works through freezing point depression.  $\Delta T_F$ 
  - $\Delta T_F = iK_F m$
- A higher concentration of solute in a small area of volume causes lower freezing points.
- Therefore, lower concentration areas of solution freeze first and increase the concentration of the resulting fluid.
- Under the right conditions, almost pure solvent can be frozen out.
- In our lab, we found that under the right conditions, the stir bar will also stay stirring on top of the ice...creating an obvious link to SBSE.





# ICECLES Apparatus

SOUTH DAKOTA
STATE UNIVERSITY



- Typical experimental...
  - Coolant at -3 to -7 °C.
  - Start at 1200 rpm; 300 rpm after 2 hr.
  - Aqueous sample.
  - Freezing over2-3 hours.



# ICECLES Sample Prep



- ICECLES was performed using...
  - 1200 rpm stirring.
  - Coolant at -5 °C.
  - Methylene blue dye.
  - Freezing over 3 hours.





## ICECLES Schematic

SOUTH DAKOTA
STATE UNIVERSITY









- White arrows designate the position of the stir bar.
- Stir bar is removed and typically...
  - placed in a TDU tube for GC.
  - Back-extracted for LC.



# ICECLES "Equilibrium"

### **SBSE** $f_{extr}$ :

$$f_{extr} = \frac{K_{SB}V_{SB}}{K_{SB}V_{SB} + V_{aq}}$$



#### **ICECLES** f<sub>extr</sub>:

$$f_{extr} = \frac{K_{SB}V_{SB}}{K_{ice}V_{ice} + K_{SB}V_{SB} + V_{aq}} 0$$

- Need very small K<sub>ice</sub> for large f<sub>extr</sub>.
- Fortunately,  $K_{ice}$  is generally  $10^{-2}$  to  $10^{-4}$ .
- K<sub>ice</sub> is a function of the rate of freezing, etc.



## Fraction Extracted by ICECLES





## Fraction Extracted by ICECLES





### Signal Enhancement with ICECLES



# Atrazine (log $K_{ow} = 2.4$ ) Extraction









|                   | Sample Size |                  | Signal<br>Relative to |              |
|-------------------|-------------|------------------|-----------------------|--------------|
| Technique         | (mL)        | <b>Automated</b> | SBSE                  | Recovery (%) |
| SPE               | 1000        | No               | 2.3                   | 3.2          |
| LLE               | 500         | No               | 2.2                   | 6.4          |
| SBSE              | 10          | Yes              | 1                     | 14           |
| SPME <sup>1</sup> | 10          | Yes              | 2.9x10 <sup>-3</sup>  | $ND^2$       |
| SPME <sup>3</sup> | 10          | Yes              | 6.4x10 <sup>-3</sup>  | $ND^2$       |
| ICECLES           | 10          | Yes              | 4.9                   | 70           |

<sup>&</sup>lt;sup>1</sup>Back-extracted with 500 μL



<sup>&</sup>lt;sup>2</sup>ND = not detected

 $<sup>^3</sup>$ Back-extracted with 55  $\mu$ L



## Atrazine Extraction During Freezing







# OUTH DAKOTA

# Analysis of NDPA in Drinking Water



- NDPA ( $\log K_{ow} = 1.4$  est)
  - Carcinogen.
  - EPA candidate contaminant.
  - EPA reporting limit = 7 ng/L.

LARGE

 Analysis of low ppt levels via a lowresolution GCMS

Dzisam and Logue (2019)

# OUTH DAKOTA

# Analysis of NDPA in Drinking Water



- ICECLES allows detection on a low resolution GCMS (SIM).
- Quantification of NDPA at 2 ng/L was achievable in one drinking water source.

Dzisam and Logue (2019)

# Pesticide Analysis in Drinking Water



- ICECLES detects more compounds at a greater sensitivity than SBSE and especially better than SPME.
  - ICECLES, SBSE, SPME (55 μL back-extract) were able to detect 53, 44, and 39 compounds, respectively at 10 ng/mL, and 32, 25, and 13 compounds, respectively, at 0.1 ng/mL.

Skaggs, Alluhayb, and Logue (under review)



# Pesticide Analysis In Drinking Water

| Compound             | Log<br>K <sub>ow</sub> | Concentration Detected (ng/mL) |      |                   |                   | Log                | Concentration Detected (ng/mL) |         |      |                   |                   |
|----------------------|------------------------|--------------------------------|------|-------------------|-------------------|--------------------|--------------------------------|---------|------|-------------------|-------------------|
|                      |                        | ICECLES                        | SBSE | SPME <sup>1</sup> | SPME <sup>2</sup> | Compound           | K <sub>ow</sub>                | ICECLES | SBSE | SPME <sup>1</sup> | SPME <sup>2</sup> |
| Aldicarb             | 1.1                    | ND                             | ND   | ND <sup>3</sup>   | ND                | Fuberidazole       | 2.7                            | 0.1     | 0.1  | 1                 | 10                |
| Aldicarb-sulfoxide   | 1.4                    | 10                             | ND   | ND                | ND                | Furathiocarb       | 4.7                            | 0.1     | 1    | 1                 | 10                |
| Aldicarb-sulfone     | 1.4                    | 10                             | ND   | ND                | ND                | Iprovalicarb       | 3.2                            | 0.1     | 0.1  | 0.1               | 1                 |
| Aminocarb            | 1.9                    | ND                             | ND   | ND                | ND                | Isopropalin        | 1.4                            | 10      | 10   | 10                | ND                |
| Amitraz              | 5.5                    | 10                             | ND   | ND                | ND                | Isocarbamid        | 2.0                            | 0.1     | 0.1  | 1                 | 10                |
| Acibenzolar-S-Methyl | 3.1                    | 0.1                            | 0.1  | 1                 | 10                | Mepronil           | 0.6                            | 0.1     | 0.1  | 0.1               | 0.1               |
| Bendiocarb           | 1.7                    | 0.1                            | 1    | ND                | 10                | Methiocarb         | 2.9                            | ND      | ND   | ND                | ND                |
| Butylate             | 4.2                    | 0.1                            | 1    | 10                | ND                | Methomyl           | 0.1                            | 10      | ND   | ND                | ND                |
| Carbaryl             | 2.4                    | 0.1                            | 0.1  | 1                 | 10                | Metolcarb          | 1.7                            | 0.1     | 1    | 10                | ND                |
| Carbendazim          | 1.5                    | 10                             | ND   | ND                | ND                | Napropamide        | 3.4                            | 0.1     | 0.1  | 1                 | 10                |
| Carbofuran           | 2.3                    | 1                              | 1    | 10                | ND                | Naproanilide       | 4.4                            | 0.1     | 0.1  | 0.1               | 1                 |
| Chlorantraniliprole  | 2.8                    | 0.1                            | 1    | 1                 | 10                | Oxamyl             | -0.5                           | 10      | ND   | ND                | ND                |
| Chlorodimeform       | 2.9                    | 10                             | 10   | 10                | ND                | Oxamyl oxime       | 0.2                            | ND      | ND   | ND                | ND                |
| Chlorbufam           | 3.6                    | 0.1                            | 0.1  | 1                 | ND                | Oryzalin           | 3.7                            | 1       | ND   | 10                | ND                |
| Chlorpropham         | 3.8                    | 0.1                            | 0.1  | 1                 | 10                | Phenmedipham       | 2.7                            | 1       | 10   | ND                | ND                |
| Cymiazole            | 2.5                    | ND                             | ND   | ND                | ND                | Pirimicarb         | 1.7                            | 0.1     | 0.1  | 1                 | 10                |
| Cycloate             | 3.9                    | 10                             | ND   | ND                | ND                | Promecarb          | 3.1                            | 0.1     | 0.1  | 0.1               | 1                 |
| Desmedipham          | 3.2                    | 1                              | 1    | ND                | ND                | Propamocarb HCl    | 4.9                            | ND      | ND   | ND                | ND                |
| Diallate             | 3.3                    | 1                              | 1    | 1                 | 10                | Propanil           | 3.1                            | 0.1     | 0.1  | 0.1               | 1                 |
| Dimepiperate         | 5.6                    | 10                             | 10   | 10                | ND                | Propham            | 2.6                            | 0.1     | 1    | 10                | ND                |
| Dioxacarb            | 4.9                    | 1                              | 10   | ND                | ND                | Thiabendazole      | 2.5                            | 0.1     | 0.1  | 0.1               | 1                 |
| Diphenamid           | 2.4                    | 0.1                            | 0.1  | 0.1               | 1                 | Thiodicarb         | 1.6                            | 0.1     | 1    | 1                 | 10                |
| EPTC                 | 3.2                    | 10                             | ND   | ND                | ND                | Triallate          | 4.6                            | 1       | 1    | 1                 | 10                |
| Ethiofencarb         | 2.0                    | ND                             | ND   | ND                | ND                | Trichlamide        | 5.6                            | 0.1     | 0.1  | 0.1               | 1                 |
| Etobenzanid          | 4.3                    | 0.1                            | 0.1  | 0.1               | 1                 | 2,3,5-Trimethacarb | 2.5                            | 0.1     | 0.1  | 1                 | 10                |
| Fenfuram             | 2.6                    | 0.1                            | 0.1  | 1                 | 10                | 3,4,5-Trimethacarb | 2.6                            | 0.1     | 0.1  | 0.1               | 1                 |
| Fenoxycarb           | 4.3                    | 0.1                            | 0.1  | 0.1               | 1                 | Vernolate          | 3.8                            | 1       | 1    | 1                 | 10                |
| Fenthiocarb          | 3.3                    | 0.1                            | 0.1  | 0.1               | 1                 | XMC                | 2.3                            | 0.1     | 0.1  | 1                 | 10                |
| Fenoxanil            | 3.5                    | 0.1                            | 0.1  | 0.1               | 1                 | Xylylcarb          | 2.1                            | 1       | 10   | ND                | ND                |
| Formetanate HCl      | 4.6                    | 1                              | 1    | ND                | ND                | Zoxamide           | 3.8                            | 0.1     | 0.1  | 1                 | 10                |



## Pesticide Analysis In Purified Water

SOUTH DAKOTA
STATE UNIVERSITY

| Compound             | Log             | Concentration Detected (ng/mL) |      |                   |                   | Log                | Concentration Detected (ng/mL) |         |      |                   |                   |
|----------------------|-----------------|--------------------------------|------|-------------------|-------------------|--------------------|--------------------------------|---------|------|-------------------|-------------------|
|                      | K <sub>ow</sub> | ICECLES                        | SBSE | SPME <sup>1</sup> | SPME <sup>2</sup> | Compound           | K <sub>ow</sub>                | ICECLES | SBSE | SPME <sup>1</sup> | SPME <sup>2</sup> |
| Aldicarb             | 1.1             | 10                             | 10   | $ND^3$            | ND                | Fuberidazole       | 2.7                            | 0.1     | 0.1  | 1                 | 10                |
| Aldicarb-sulfoxide   | 1.4             | 1                              | ND   | ND                | ND                | Furathiocarb       | 4.7                            | 0.1     | 0.1  | 0.1               | 1                 |
| Aldicarb-sulfone     | 1.4             | 1                              | ND   | ND                | ND                | Iprovalicarb       | 3.2                            | 0.1     | 0.1  | 0.1               | 1                 |
| Aminocarb            | 1.9             | 0.1                            | 1    | 1                 | 10                | Isopropalin        | 1.4                            | 10      | 10   | 10                | 10                |
| Amitraz              | 5.5             | 10                             | 10   | ND                | ND                | Isocarbamid        | 2.0                            | 0.1     | 10   | 10                | ND                |
| Acibenzolar-S-Methyl | 3.1             | 0.1                            | 0.1  | 1                 | 10                | Mepronil           | 0.6                            | 0.1     | 0.1  | 0.1               | 1                 |
| Bendiocarb           | 1.7             | 0.1                            | 1    | 1                 | 10                | Methiocarb         | 2.9                            | 10      | 10   | 10                | 10                |
| Butylate             | 4.2             | 0.1                            | 0.1  | 0.1               | 1                 | Methomyl           | 0.1                            | 0.1     | ND   | ND                | ND                |
| Carbaryl             | 2.4             | 0.1                            | 0.1  | 1                 | 10                | Metolcarb          | 1.7                            | 0.1     | 1    | 10                | ND                |
| Carbendazim          | 1.5             | 0.1                            | 10   | 10                | ND                | Napropamide        | 3.4                            | 0.1     | 0.1  | 0.1               | 0.1               |
| Carbofuran           | 2.3             | 0.1                            | 1    | 10                | ND                | Naproanilide       | 4.4                            | 0.1     | 0.1  | 0.1               | 0.1               |
| Chlorantraniliprole  | 2.8             | 0.1                            | 1    | 10                | 10                | Oxamyl             | -0.5                           | 10      | ND   | ND                | ND                |
| Chlorodimeform       | 2.9             | 0.1                            | 0.1  | 1                 | ND                | Oxamyl oxime       | 0.2                            | 10      | ND   | ND                | ND                |
| Chlorbufam           | 3.6             | 0.1                            | 0.1  | 1                 | ND                | Oryzalin           | 3.7                            | 0.1     | 1    | 10                | ND                |
| Chlorpropham         | 3.8             | 0.1                            | 0.1  | 1                 | 10                | Phenmedipham       | 2.7                            | 0.1     | 1    | 1                 | 10                |
| Cymiazole            | 2.5             | 0.1                            | 0.1  | 0.1               | 1                 | Pirimicarb         | 1.7                            | 0.1     | 0.1  | 1                 | 10                |
| Cycloate             | 3.9             | 0.1                            | 0.1  | 0.1               | 1                 | Promecarb          | 3.1                            | 0.1     | 0.1  | 0.1               | 1                 |
| Desmedipham          | 3.2             | 0.1                            | 0.1  | 0.1               | 1                 | Propamocarb HCl    | 4.9                            | 0.1     | 1    | 10                | ND                |
| Diallate             | 3.3             | 0.1                            | 0.1  | 0.1               | 1                 | Propanil           | 3.1                            | 0.1     | 0.1  | 1                 | 10                |
| Dimepiperate         | 5.6             | 0.1                            | 0.1  | 0.1               | 0.1               | Propham            | 2.6                            | 0.1     | 1    | 10                | ND                |
| Dioxacarb            | 4.9             | 0.1                            | 0.1  | 0.1               | 1                 | Thiabendazole      | 2.5                            | 0.1     | 0.1  | 0.1               | 1                 |
| Diphenamid           | 2.4             | 0.1                            | 0.1  | 0.1               | 1                 | Thiodicarb         | 1.6                            | 0.1     | 1    | 10                | ND                |
| EPTC                 | 3.2             | 0.1                            | 0.1  | 1                 | 10                | Triallate          | 4.6                            | 0.1     | 0.1  | 0.1               | 1                 |
| Ethiofencarb         | 2.0             | 10                             | 10   | 10                | ND                | Trichlamide        | 5.6                            | 0.1     | 0.1  | 0.1               | 1                 |
| Etobenzanid          | 4.3             | 0.1                            | 0.1  | 0.1               | 1                 | 2,3,5-Trimethacarb | 2.5                            | 0.1     | 1    | 1                 | 10                |
| Fenfuram             | 2.6             | 0.1                            | 0.1  | 1                 | 10                | 3,4,5-Trimethacarb | 2.6                            | 0.1     | 1    | 1                 | 10                |
| Fenoxycarb           | 4.3             | 0.1                            | 0.1  | 0.1               | 0.1               | Vernolate          | 3.8                            | 0.1     | 0.1  | 0.1               | 1                 |
| Fenthiocarb          | 3.3             | 0.1                            | 0.1  | 0.1               | 0.1               | XMC                | 2.3                            | 0.1     | 1    | 1                 | 10                |
| Fenoxanil            | 3.5             | 0.1                            | 0.1  | 0.1               | 1                 | Xylylcarb          | 2.1                            | 10      | 10   | ND                | ND                |
| Formetanate HCl      | 4.6             | 0.1                            | 1    | 10                | ND                | Zoxamide           | 3.8                            | 0.1     | 0.1  | 0.1               | 1<br>LAKC         |

18

# ICECLES of Green Tea







# ICECLES of Green Tea

SOUTH DAKOTA
STATE UNIVERSITY

| Peak<br>No./Category | Name                                                                    | Odor    | Log<br>K <sub>ow</sub> |  |
|----------------------|-------------------------------------------------------------------------|---------|------------------------|--|
| Alcohol              |                                                                         |         |                        |  |
| 14                   | 1-Pentanol                                                              | Fruity  | 1.33                   |  |
| 15                   | 2-Penten-1-ol, (Z)                                                      | Rubber  | $0.9^{*}$              |  |
| 84                   | Phenylethyl Alcohol                                                     | Rose    | 1.57                   |  |
| 105                  | α-Terpineol (α,α4-trimethyl 3-<br>Cyclohexene-1-methanol)               | Floral  | 3.28                   |  |
| Heterocyclic         |                                                                         |         |                        |  |
| 21                   | Methyl pyrazine                                                         | Nut     | 0.49                   |  |
| 38                   | 2,5-dimethyl pyrazine                                                   | Nut     | 1.03                   |  |
| Aldehyde             |                                                                         |         |                        |  |
| 22                   | Furfural                                                                | Caramel | 0.83                   |  |
| 37                   | (E,E)-2,4-Hexadienal                                                    | Citrus  | $1.37^{c}$             |  |
| 111                  | 5-(hydroxymethyl) furfural (5-<br>(hydroxmethyl)-2-Furancarboxaldehyde) | Carmel  | -0.09 <sup>c</sup>     |  |
| Ketone               |                                                                         |         |                        |  |
| 82                   | Maltol                                                                  | Caramel | 0.02                   |  |
| 91                   | Ketoisophorone (2,6,6-Trimethyl-2-cyclohexene-1,4-dione)                | Floral  | 1 <sup>b</sup>         |  |
| Ester                | •                                                                       |         |                        |  |
| 95                   | Benzyl acetate                                                          | Fruit   | 1.96 <sup>b</sup>      |  |
| 66                   | γ-Undecalactone (5-heptyldihydro-2- (3H)-Furanone)                      | Fruit   | $0.7^{b}$              |  |
| Phenol               |                                                                         |         |                        |  |
| 136                  | Syringol (2,6-dimethoxy phenol)                                         | Phenol  | $1.1^{b}$              |  |
| 138                  | Eugenol                                                                 | Clove   | 2.49                   |  |

 $<sup>^{</sup>b}$ log  $K_{ow}$  values were calculated by using the difference between a log  $K_{ow}$  value of known compound and the query compound then estimated by an additive model with well-defined correction factors [26].





#### 5-(Hydroxymethyl)furfural







Alluhayb and Logue (2017). Time (Min)

 $<sup>^{</sup>c}log\ K_{ow}$  values were calculated by using an atom/fragment contribution method via KOWWIN $^{TM}$  program [27].



#### • Advantages:

- Can achieve extremely high concentration factors.
- Well-suited for trace targeted analysis and comprehensive analysis.
- Extends SBSE to compounds with log  $K_{ow} \le 3$ . This polarity range is difficult to analyze for most sample preparation techniques.
- Well-suited for more thermally labile and volatile compounds.
- Easier to back-extract compounds, making ICECLES more amenable for LC analysis.

#### • Areas of improvement:

- Lengthy sample preparation times (depending on sample volume).
- Simple implementation requires small sample volumes.

Addressed by automated large volume system.

- Precipitation of some compounds more likely under freezing temps.
- Extra equipment, compared with SBSE, necessary to freeze the sample.
- More difficult for low freezing point solvents.







- LARGE group members.
- SACM and Quasim University.
- U.S. Joint Executive Office for Chem Bio Defense, Joint Program Management Protection W911SR-09-0059.
- Meeting organizers and participants.
- South Dakota winters, soda, and my laziness.







SOUTH DAKOTA
STATE UNIVERSITY



brian.logue@sdstate.edu

https://www.sdstate.edu/chemistry-biochemistry/brian-logue

